Uniformly Continuous Composition Operator in the Space of Φ–variation Functions in the Sense of Riesz

نویسندگان

  • A. Acosta
  • W. Aziz
  • J. Matkowski
چکیده

Assuming that a Nemytskii operator maps a subset of the space of bounded variation functions in the sense of Riesz into another space of the same type, and is uniformly continuous, we prove that the generator of the operator is an affine function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

ON NEMYTSKII OPERATOR IN THE SPACE OF SET-VALUED FUNCTIONS OF BOUNDED p-VARIATION IN THE SENSE OF RIESZ WITH RESPECT TO THE WEIGHT FUNCTION

In this paper we consider the Nemytskii operator ( Hf ) (t) = h(t, f(t)), generated by a given set–valued function h is considered. It is shown that if H is globally Lipschitzian and maps the space of functions of bounded p-variation (with respect to a weight function α) into the space of set-valued functions of bounded q-variation (with respect to α) 1 < q < p, then H is of the form ( Hφ ) (t)...

متن کامل

A Banach-stone Theorem for Riesz Isomorphisms of Banach Lattices

Let X and Y be compact Hausdorff spaces, and E, F be Banach lattices. Let C(X,E) denote the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. We prove that if there exists a Riesz isomorphism Φ : C(X,E) → C(Y, F ) such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomorphic to Y , and E is Riesz i...

متن کامل

Universal Approximator Property of the Space of Hyperbolic Tangent Functions

In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.

متن کامل

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010